129 resultados para Tumor Suppressor Protein p53

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor-suppressing function of p53 can be affected in a variety of manners. Here, we describe a novel mechanism of transformation by mutant p53. Previously, it had been believed that mutant p53 molecules transform cells by oligomerizing with wild-type p53 and inactivating it. However, we demonstrated that there exists an additional mechanism of inactivation of p53 available to p53 mutants. It involves sequestration of cofactors necessary to p53, and subsequent interruption of its transactivation and tumor suppression functions. The p53 amino or carboxyl termini, known to interact with a large number of cellular factors, can affect wild-type p53 in this manner. Although they are unable to oligomerize with wild-type p53, they transform cells containing p53, and inhibit its transactivation ability. In addition, they interrupt growth suppression by p53, but not RB, confirming that they specifically affect p53 function, rather than having a general growth-stimulatory phenomenon. Also, we have cloned a p53 tumor mutation which results in expression of the amino terminus of p53. This provides a means to study the factor-sequestration transforming mechanism in vivo. Additionally, we found that the published sequence of the mdm2 gene is in error. mdm2 is a gene intimately involved with p53, blocking its ability to transform cells. Finally, previous data had established the influence of cell-cycle status on p53 function. In growth-arrested cells, wild-type p53 expressed by a transgene cannot activate transcription, but if these cells are forced to cycle by addition of cyclin E, p53 once again becomes functional. In this study, we extend these findings by examining only those cells successfully transfected, using fluorescence-activated cell sorting. Our results support the previous data, that cyclin E pushes growth-arrested cells back into the cell cycle. In summary, we have demonstrated the potential importance of cofactor association and protein modification to the abilities of p53 to cause transcription activation and repression, inhibition of DNA replication and induction of DNA repair, and initiation of cell-cycle arrest and apoptosis. Further elucidation of these processes and their roles in tumor suppression will prove fascinating indeed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of antiproliferative function of p53 by point mutation occurred frequently in various solid tumors. However, the genetic change of p53 by deletion or point mutation was a rare event (6%) in the cells of 49 AML patients analyzed by single-stranded conformation polymorphism and sequencing. Despite infrequent point mutation, abundant levels of p53 protein were detected in 75% of AML patients studied by immunoprecipitation with p53 specific antibodies. Furthermore, p53 protein in most cases had an altered conformation as analyzed by the reactivity to PAb240 which recognizes mutant p53; p53 protein in mitogen stimulated normal lymphocytes also had similar altered conformation. This altered conformation may be another mechanism for inactivation of p53 function in the growth stimulated environment. Some evidence indicated that posttranslational modification by phosphorylation may contribute to the conformational change of p53.^ Retinoblastoma (Rb) gene inactivation by deletion, rearrangement or mutation has also been implicated in many types of solid tumors. Our studies showed that absence or low levels of Rb protein were observed in more than 20% of AML patients at diagnosis, and the low levels of Rb correlated with shorter survival of patients. The absence of Rb protein was due to gene inactivation in some cases and to abnormal regulation of Rb expression in others. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p53 plays a role in cell cycle arrest and apoptosis. p53 has also been shown to be involved in DNA replication. To study the effect of p53 on DNA replication, we utilized a SV40 based shuttle vector system. The pZ402 shuttle vector, was constructed with a mutated T-antigen unable to interact with p53 but able to support replication of the shuttle vector. When a transcriptional activation domain p53 mutant was tested for its ability to inhibit DNA replication no inhibition was observed. Competition assays with the DNA binding domain of p53 was also able to block the inhibition of DNA replication by p53 suggesting that p53 can inhibit DNA replication through the transcriptional activation of a target gene. One likely target gene, p21$\sp{\rm cip/waf}$ was tested to determine whether p53 inhibited DNA replication by transcriptionally activating p21$\sp{\rm cip/waf}$. Two independent approaches utilizing p21$\sp{\rm cip/waf}$ null cells or the expression of an anti-sense p21$\sp{\rm cip/waf}$ expression vector were utilized. p53 was able to inhibit pZ402 replication independently of p21$\sp{\rm cip/waf}$. p53 was also able to inhibit DNA replication independent of the p53 target genes Gadd45 and the replication processivity factor PCNA. The inhibition of DNA replication by p53 was also independent of direct DNA binding to a consensus site on the replicating plasmid. p53 mutants can be classified into two categories: conformational and DNA contact mutants. The two types of p53 mutants were tested for their effects on DNA replication. While all conformational mutants were unable to inhibit DNA replication three out of three DNA contact mutants tested were able to inhibit DNA replication. The work here studies the effect wild-type and mutant p53 has on DNA replication and demonstrated a possible mechanism by which wild-type p53 could inhibit DNA replication through the transcriptional activation of a target gene. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medulloblastoma is the most common malignant brain tumor of childhood. Despite numerous advances, clinical challenges range from recurrent and progressive disease to long-term toxicities in survivors. The lack of more effective, less toxic therapies results from our limited understanding of medulloblastoma growth. Although TP53 is the most commonly altered gene in cancers, it is rarely mutated in medulloblastoma. Accumulating evidence, however, indicates that TP53 pathways are disrupted in medulloblastoma. Wild-type p53-induced phosphatase 1 (WIP1 or PPM1D) encodes a negative regulator of p53. WIP1 amplification (17q22-q23) and its overexpression have been reported in diverse cancer types. We examined primary medulloblastoma specimens and cell lines, and detected WIP1 copy gain and amplification prevalent among but not exclusively in the tumors with 17q gain and isochromosome 17q (i17q), which are among the most common cytogenetic lesions in medulloblastoma. WIP1 RNA levels were significantly higher in the tumors with 17q gain or i17q. Immunoblots confirmed significant WIP1 protein in primary tumors, generally higher in those with 17q gain or i17q. Under basal growth conditions and in response to the chemotherapeutic agent, etoposide, WIP1 antagonized p53-mediated apoptosis in medulloblastoma cell lines. These results indicate that medulloblastoma express significant levels of WIP1 that modulate genotoxic responsiveness by negatively regulating p53.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survivin (BIRC5) is a member of the Inhibitor of Apoptosis (IAP) gene family and functions as a chromosomal passenger protein as well as a mediator of cell survival. Survivin is widely expressed during embryonic development then becomes transcriptionally silent in most highly differentiated adult tissues. It is also overexpressed in virtually every type of tumor. The survivin promoter contains a canonical CpG island that has been described as epigenetically regulated by DNA methylation. We observed that survivin is overexpressed in high grade, poorly differentiated endometrial tumors, and we hypothesized that DNA hypomethylation could explain this expression pattern. Surprisingly, methylation specific PCR and bisulfite pyrosequencing analysis showed that survivin was hypermethylated in endometrial tumors and that this hypermethylation correlated with increased survivin expression. We proposed that methylation could activate survivin expression by inhibit the binding of a transcriptional repressor. ^ The tumor suppressor protein p53 is a well documented transcriptional repressor of survivin and examination of the survivin promoter showed that the p53 binding site contains 3 CpG sites which often become methylated in endometrial tumors. To determine if methylation regulates survivin expression, we treated HCT116 cells with decitabine, a demethylation agent, and observed that survivin transcript and protein levels were significantly repressed following demethylation in a p53 dependent manner. Subsequent binding studies confirmed that DNA methylation inhibited the binding of p53 protein to its binding site in the survivin promoter. ^ We are the first to report this novel mechanism of epigenetic regulation of survivin. We also conducted microarray analysis which showed that many other cancer relevant genes may also be regulated in this manner. While demethylation agents are traditionally thought to inhibit cancer cell growth by reactivating tumor suppressors, our results indicate that an additional important mechanism is to decrease the expression of oncogenes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian genomes encode at least 15 distinct DNA polymerases, functioning as specialists in DNA replication, DNA repair, recombination, or bypass of DNA damage. Although the DNA polymerase zeta (polzeta) catalytic subunit REV3L is important in defense against genotoxins, little is known of its biological function. This is because REV3L is essential during embryogenesis, unlike other translesion DNA polymerases. Outstanding questions include whether any adult cells are viable in the absence of polzeta and whether polzeta status influences tumorigenesis. REV3L-deficient cells have properties that could influence the development of neoplasia in opposing ways: markedly reduced damage-induced point mutagenesis and extensive chromosome instability. To answer these questions, Rev3L was conditionally deleted from tissues of adult mice using MMTV-Cre. Loss of REV3L was tolerated in epithelial tissues but not in the hematopoietic lineage. Thymic lymphomas in Tp53(-/-) Rev3L conditional mice occurred with decreased latency and higher incidence. The lymphomas were populated predominantly by Rev3L-null T cells, showing that loss of Rev3L can promote tumorigenesis. Remarkably, the tumors were frequently oligoclonal, consistent with accelerated genetic changes in the absence of Rev3L. Mammary tumors could also arise from Rev3L-deleted cells in both Tp53(+/+) and Tp53(+/-) backgrounds. Mammary tumors in Tp53(+/-) mice deleting Rev3L formed months earlier than mammary tumors in Tp53(+/-) control mice. Prominent preneoplastic changes in glandular tissue adjacent to these tumors occurred only in mice deleting Rev3L and were associated with increased tumor multiplicity. Polzeta is the only specialized DNA polymerase yet identified that inhibits spontaneous tumor development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen receptor (ER) and the tumor suppressor p53 are key prognostic indicators in breast cancer. Estrogen signaling through its receptor (ER) controls proliferation of normal as well as transformed mammary epithelial cells, and the presence of ER is established as a marker of good prognosis and response to therapy. The p53 tumor suppressor gene is often referred to as the "cellular gatekeeper" due to its extensive control of cell proliferation and apoptosis. Loss of functional p53 is a negative prognostic indicator and is correlated with lack of response to antiestrogens, reduced disease-free interval and increased chance of disease recurrence. Clinical studies have demonstrated that tumors with mutated p53 tend to be ER negative, while ER positive tumors tend to have wild type p53. ^ Recent studies from our lab indicate that p53 genotype correlates with estrogen receptor expression in mammary tumors in vivo. We therefore hypothesized that p53 regulates ER expression in mammary cancer cells by recruitment of specific cofactors to the ER promoter. To test this, MCF-7 cells were treated with doxorubicin or ionizing radiation, both of which stimulated significant increases in p53 expression, as expected, but also increased ER expression in a p53-dependent manner. Furthermore, in cells treated with siRNA targeting p53, both p53 and ER protein levels were significantly reduced. P53 was also demonstrated to transcriptionally regulate the ER promoter in luciferase assays and chromatin immunoprecipitation assays showed that p53 was recruited to the ER promoter along with CARM1, CBP, c-Jun and Sp1 and that this multifactor complex was formed in a p53-dependent manner. The regulation of ER by p53 has therapeutic implications, as the treatment of breast cancer cells with doxorubicin sensitized these cells to tamoxifen treatment. Furthermore, response to tamoxifen as well as to estrogen was dependent on p53 expression in ER positive human breast cancer cells. Taken together, these data demonstrate that p53 regulates ER expression through transcriptional control of the ER promoter, accounting for their concordant expression in human breast cancer and identifying potentially beneficial therapeutic strategies for the treatment of ER positive breast cancers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p53 functions as a tumor suppressor through its ability to initiate either growth arrest or apoptosis in cells which have sustained DNA damage. p53 elicits these cellular phenotypes through its biochemical function as a transcriptional activator. By inducing the expression of a battery of target genes, p53 is able to prevent the propagation of cells with damaged DNA. However, the genes transcriptionally induced by p53 which have been identified to date do not fully explain p53 function. p53 has been demonstrated to activate genes involved in cell cycle inhibition, apoptosis and cell proliferation. The reasons for simultaneous activation of p53 targets with disparate, opposing functions are not clear, but may be due to the use of transformed cell lines in previous experiments. In the studies presented in this thesis, the pathway of p53 tumor suppression has been studied in detail in two systems chosen for their relevance to the natural cell environment. One utilizes a normal, unaltered cultured cell system; the other the whole mouse. In order to better understand the role of the known p53 targets in effecting p53 function in normal cells, early rat embryo fibroblasts were irradiated with ultraviolet light to induce DNA damage. It was discovered that p53 protein levels increased in response to irradiation. The known targets of p53, namely, $p21\sp{WAF1/CIP1},\ mdm2,\ cyclin\ G,$ and bax, were shown for the first time to have a differential temporal induction. The growth suppressor $p21\sp{WAF1/CIP1}$ was induced first, followed by cyclin G then mdm2, which is involved in proliferation through its inactivation of p53, and finally, the apoptosis promoter, bax. These findings indicated that p53 activates its target genes in a manner to allow maximum effectiveness of target function. The rat embryo fibroblasts were shown to undergo apoptosis 24 h after irradiation. Additionally, investigation of these cells for cell cycle alterations demonstrated a brief arrest in G1. In the second study, thymocytes from mice with wild type p53 were shown to undergo apoptosis and activate p53 target genes upon ionizing radiation treatment, while thymocytes from mice deficient in p53 could not. The p53 target genes mdm2 and fas were tested in vivo for their ability to mediate p53-regulated apoptosis, and were found dispensible for that cellular function. Therefore, the p53 targets identified to date do not fully explain the ability of p53 to function as a tumor suppressor. Potentially, functional redundancy between the known targets would account for the data seen in these experiments. Additionally, identification of additional target genes should add further understanding of the p53 pathway of tumor suppression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid increase of the ultraviolet radiation (UVR)-related skin cancer incidence has attracted more and more public attention during the last few decades. Prevention and treatment of UVR-related skin cancer has become an important public health issue in the United States. Recent studies indicate that mutations in ras and/or p53 genes may be involved in UVR-induced skin tumor development but the precise molecular mechanism remains unclear. In this study, alterations of H-ras and p53 genes were investigated in different stages of carcinogenesis in a chronic UVR (solar simulator) exposure-induced Sencar mouse skin carcinogenesis model in order to clarify the role of the alterations of these genes during the skin carcinogenesis process and to further understand the mechanisms by which UVR causes skin cancer.^ Positive ras-p21 staining in cell membranes and cytosol were detected in 18/33 (55%) of squamous cell carcinomas (SCCs), but were not detected in UV-exposed skin, papillomas, or spindle cell tumors (SCTs). Positive staining of the malignant progression marker K13 was found in 17/33 (52%) of SCCs only. A significant positive correlation was observed between the K13 and the ras-p21 expression. Polymerase chain reaction (PCR)-based single strand conformation polymorphism (SSCP) analysis and gene sequencing analysis revealed three point mutations, one (codon 56) in UV-exposed non-tumor bearing skin and the other two (codons 21 and 13) in SCCs. No UV-specific mutation patterns were found.^ Positive p53 nuclear staining was found in 10/37 (27%) of SCCs and 12/24 (50%) of SCTs, but was not detected in normal skin or papillomas. PCR-based SSCP and sequencing analysis revealed eight point mutations in exons 5 and 6 (four in SCTs, two in SCCs, and two in UV-exposed skin) including six C-T or C-A transitions. Four of the mutations occurred at a dipyrimidine (CC) sequence. The pattern of the mutations indicated that the mutagenic lesions were induced by UVR.^ These results indicate that overexpression of ras-p21 in conjunction with aberrant expression of K13 occurred frequently in UVR-induced SCCs in Sencar mouse skin. The point mutation in the H-ras gene appeared to be a rare event in UVR skin carcinogenesis and may not be responsible for overexpression of ras-p21. UVR-induced P53 gene alteration is a frequent event in UVR-induced SCCs and later stage SCT tumors in Sencar mice skin, suggesting the p53 gene mutation plays an important role in skin tumor malignant progression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations into the molecular basis of glioblastoma multiforme led to the identification of a putative tumor suppressor gene, MMAC/ PTEN. Initial studies implicated MMAC/PTEN in many different tumor types, and identified a protein phosphatase motif in its sequence. This project aimed to identify the biological and biochemical functions of MMAC/PTEN by transiently expressing the gene in cancer cells that lack a functional gene product. ^ Expression of MMAC/PTEN mildly suppressed the growth of U251 human glioma cells and abrogated the growth advantage mediated by overexpression of the epidermal growth factor receptor (EGFR). Immunoblotting demonstrated that MMAC/PTEN expression did not affect the phosphorylation of the EGFR itself, or the intermediates of several downstream signaling pathways. However, MMAC/PTEN expression significantly reduced the phosphorylation and catalytic activity of the proto-oncogene Akt/PKB. While Akt/PKB regulates the survival of many cell types, expression of MMAC/PTEN did not induce apoptosis in adherent U251 cells. Instead, MMAC/PTEN expression sensitized the cells to apoptosis when maintained in suspension (anoikis). As the survival of suspended cells is one of the hallmarks leading to metastasis, MMAC/PTEN expression was examined in a system in which metastasis is more clinically relevant, prostate cancer. ^ Expression of MMAC/PTEN in both LNCaP and PC3-P human prostate cancer cells specifically inhibited Akt/PKB phosphorylation. MMAC/PTEN expression in LNCaP cells resulted in a profound inhibition of growth that was significantly greater than that achieved with expression of p53. Expression of MMAC/PTEN in PC3-P cells resulted in greater growth inhibition than was observed in U251 glioma cells, but less than was observed in LNCaP cells, or upon p53 expression. To determine if MMAC/PTEN could function as a tumor suppressor in vivo, the effects of MMAC/PTEN expression on PC3-P cells implanted orthotopically in nude mice were examined. The ex-vivo expression of MMAC/PTEN did not decrease tumor incidence, but it did significantly decrease tumor size and metastasis. In-vivo expression of MMAC/PTEN in pre-established PC3-P tumors did not significantly inhibit tumor incidence or size, but did inhibit metastasis formation. ^ These studies demonstrate that MMAC/PTEN is a novel and important tumor suppressor gene, which functions to downregulate an important cell survival signaling pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promyelocytic leukemia protein PML is a growth suppressor essential for induction of apoptosis by diverse apoptotic stimuli. The mechanism by which PML regulates cell death remains unclear. In this study we found that ectopic expression of PML potentiates cell death in the TNFα-resistant tumor line U2OS and significantly sensitized these cells to apoptosis induced by TNFα in a p53-independent manner. Our study demonstrated that both PML and PML/TNFα-induced cell death are associated with DNA fragmentation, activation of caspase-3, -7, -8, and degradation of DFF/ICAD. Furthermore, we found that PML-induced and PML/TNFα-induced cell death could be blocked by the caspase-8 inhibitors crmA and c-FLIP, but not by Bcl-2, the inhibitor of mitochondria-mediated apoptotic pathway. These findings indicate that this cell death event is initiated through the death receptor-dependent apoptosis pathway. Our study further showed that PML recruits NF-kappa B (NF-κB) to the PML nuclear body, blocks NF-κB binding to its cognate enhancer, and represses its transactivation function with the C-terminal region. Therefore PML inhibits the NF-κB survival pathway. Overexpression of NF-κB rescued cell death induced by PML and PML/TNFκ. These results imply that PML is a functional repressor of NF-κB. This notion was further supported by the finding that the PML−/− mouse embryo fibroblasts (MEFs) are more resistant than the wild-type MEFs to TNFκ-induced apoptosis. In conclusion, our studies convincingly demonstrated that PML potentiates cell death through inhibition of the NF-κB survival pathway. Activation of NF-κB frequently occurs during oncogenesis. Our study here suggests that a loss of PML function enhances the NF-κB survival pathway and this event may contribute to tumorigenesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor-specific loss of constitutional heterozygosity by deletion, mitotic recombination or nondisjunction is a common mechanism for tumor suppressor allele inactivation. When loss of heterozygosity is the result of mitotic recombination, or a segmental deletion event, only a portion of the chromosome is lost. This information can be used to map the location of new tumor suppressor genes. In osteosarcoma, the highest frequencies of loss of heterozygosity have been reported for chromosomes 3q, 13q, 17p. On chromosomes 13q and 17p, allelic losses are associated with loss of function at the retinoblastoma susceptibility locus (RB1) and the p53 locus, respectively. Chromosome 3q is also of particular interest because the high percent of loss of heterozygosity (62%-75%) suggests the presence of another tumor suppressor important for osteosarcoma tumorigenesis. To localize this putative tumor suppressor gene, we used polymorphic markers on chromosome 3q to find the smallest common region of allele loss. This putative tumor suppressor was localized to a 700 kb region on chromosome 3q26.2 between the polymorphic loci D3S1282 and D3S1246. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between MMAC/PTEN, DMBT1 and the progression and prognosis of glioma, and the association between the alterations of MMAC/PTEN, p53, p16, and Rb and some cancer risk factors, such as smoking, exposure to radiation, family cancer history, and previous cancer history, were assessed in 4 studies. ^ By allelic deletion analysis, MMAC/PTEN locus was shown to be frequently lost in glioblastomas multiforme (GM) but maintained in most lower-grade astrocytic tumors. DMBT1 locus, however, was frequently lost in all grades of gliomas examined. The potential biological significance of these two regions was frontier assessed by examining microcell-hybrids that contained various fragments of 10q. Somatic cell hybrid clones that retained the MMAC/PTEN locus have less transformed phenotypes, exhibiting an inability to grow in soft agarose. On the other hand, the presence or absence of DAMT1 did not correlate with any in vitro phenotype assessed in our model system. Further, Cox proportional hazards regression analysis, adjusted for age at surgery and histologic grades (GM, and non-GM), showed that without LOH at the MMAC/PTEN locus had a significantly better prognosis than did patients with LOH at MMAC/ PTEN (hazard ratio = 0.5; 95% Cl = 0.28–0.89; P = 0.018). Furthermore, status of LOH at MMAC/PTEN was found to be significantly associated with age, while that for DMBT1 was not. These results suggest that the DMBT1 may be involved early in the oncogenesis of gliomas, while alterations in the MMAC /PTEN may be a late event in the oncogenesis related with progression of gliomas and provide a significant prognostic marker for patient survival. ^ The associations between 4 cancer risk factors and 4 tumor suppressor genes were assessed. The expression of p16 was observed to be associated with current smoking (adjusted OR = 1.9, 95% CI = 1.02–3.6) but not the former smoking (adjusted OR = 1.1, 95% Cl = 0.5–3.5). The expression of p53 was found to be associated with the family cancer history (OR = 3.5, 95% Cl = 1.07–11 for patients with first-degree family history of cancer). MMAC/ PTEN was associated with the histologic grade (OR = 2.8, 95% CI = 1.2–6.6) and age (P = 0.035). Also, the OR for LOH around MMAC/PTEN in patients with a family history of cancer was elevated (OR = 1.9, 95% CI = 0.8–4.6 for patients with first-degree family history of cancer). The associations between exposure and the alterations of tumor suppressor genes, between smoking and p16, between family history of cancer and p53 and MMAC/PTEN, provide suggestive evidences that those exposures are related to the development of gliomas. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CEACAM1-L is an adhesion molecule that suppress the growth of prostate, breast, colon and endometrial tumors. In this study we defined the domain involved in CEACAM1-L tumor suppression activity. DU145 prostate cancer cells were infected with recombinant adenoviruses containing various CEACAM1-L mutant genes, and the effects of the mutant proteins on the growth of DU145 cells were assessed in a nude-mice xenograft model. We found that expression of the CEACAM1-L cytoplasm domain alone led to growth suppression of DU145 cells. These results suggest that the cytoplasmic domain of CEACAM1-L is necessary and sufficient for its growth-suppressive function. ^ The cytoplasmic domain of CEACAM1-L is presumed to be involved in a signaling pathway resulting in the suppression of tumor cell growth. It was not clear whether post-translational modification of CEACAM1-L is required for tumor suppressor function, therefore the importance of phosphorylation in growth-inhibitory signaling pathway was investigated. Full-length CEACAM1-L was found to be phosphorylated in vivo in both tyrosine and serine residues. Mutation of tyrosine 488 to phenylalanine did not abolish the tumor-suppressive activity of CEACAM1-L while mutation of serine 503 to alanine abolished the growth-inhibitory activity. In addition, mutation of serine 503 to aspartic acid produced tumor-suppressive activity similar to that of the wild-type CEACAM1-L. These results suggested that only phosphorylation at serine 503 is essential for CEACAM1-L's growth-inhibitory function in vivo. ^ Phosphorylation of CEACAM1-L may lead to its interaction with molecules in CEACAM1-L's signaling pathway. In the last part of this study we demonstrate that CEACAM1 is able to interact with the adapter protein p66Shc. p66Shc was found to be co-immunoprecipitated with full length CEACAM1-L but not with CEACAM1-L lacking its cytoplasmic tail. Additionally this interaction occurred in the absence of the tyrosine phosphorylation of CEACAM1-L. These results suggest that p66Shc is able to interact with the cytoplasmic domain of CEACAM1-L and this interaction does not require tyrosine phosphorylation. ^ In conclusion, this study suggests that CEACAM1-L signals tumor suppression through its cytoplasmic domain by initially becoming phosphorylated on serine 503. Additionally, the interaction with p66Shc may be involved in CEACAM1-L's signaling pathway. ^